Installing Mantis On Iisa
.Boyko, Evgeniy; Gat, Amir; Bercovici, Moran2017-11-01We study viscous- elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip).
Is supported by the Adams Fellowship Program.White, Nathan J; Martin, Erika J; Brophy, Donald F; Ward, Kevin R2011-07-01A significant proportion of severely injured patients develop early coagulopathy, characterized by abnormal clot formation, which impairs resuscitation and increases mortality. We have previously demonstrated an isolated decrease in clot strength by thrombelastography in a swine model of nonresuscitated traumatic shock. In order to more closely examine platelet-fibrin interactions in this setting, we define the observed decrease in clot strength in terms of platelet-induced clot contraction and clot elastic modulus using the Hemostasis Analysis System (HAS) (Hemodyne Inc., Richmond, Virginia, USA). Whole blood was sampled for HAS measurements, metabolic measurements, cell counts, and fibrinogen concentration at baseline prior to injury and again at a predetermined level of traumatic shock defined by oxygen debt.
Male swine (N=17) received femur fracture and controlled arterial hemorrhage to achieve an oxygen debt of 80 ml/kg. Platelet counts were unchanged, but fibrinogen concentration was reduced significantly during shock (167.6 vs. 66.7 mg/dl, P=0.0007). Platelet contractile force generated during clot formation did not change during shock (11.7 vs. 10.4 kdynes, P=0.41), but clot elastic modulus was dynamically altered, resulting in a lower final value (22.9 vs. 17.3 kdynes/cm, P 0.05) except in 36 h (P = 0.014). The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences (P 0.05) except between Groups 1 and 3 and between Groups 2 and 3 (P 0.05) except in 36 h ( P = 0.014).
The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences ( P 0.05) except between Groups 1 and 3 and between Groups 2 and 3 ( P.Dell, Zachary E.; Schweizer, Kenneth S.A unified, microscopic, theoretical understanding of polymer dynamics in concentrated liquids from segmental to macromolecular scales remains an open problem. We have formulated a statistical mechanical theory for this problem that explicitly accounts for intra- and inter-molecular forces at the Kuhn segment level. The theory is self-consistently closed at the level of a matrix of dynamical second moments of a tagged chain. Two distinct regimes of isotropic transient localization are predicted.
In semidilute solutions, weak localization is predicted on a mesoscopic length scale between segment and chain scales which is a power law function of the invariant packing length. This is consistent with the breakdown of Rouse dynamics and the emergence of entanglements. The chain structural correlations in the dynamically arrested state are also computed. In dense melts, strong localization is predicted on a scale much smaller than the segment size which is weakly dependent on chain connectivity and signals the onset of glassy dynamics.
Predictions of the dynamic plateau shear modulus are consistent with the known features of emergent rubbery and glassy elasticity. Generalizations to treat the effects of chemical crosslinking and physical bond formation in polymer gels are possible.1988-11-01revri if necenary and iIenitif by block number) FIELO GROUP SUS-GROUP Installation Restoration Program, Groundwater,P& Soils.
Surface water.qoulkhave been affected by the Site 3 flight line storm drainage outfall. Groundwater quali y samples were collected from the Site 4 water supply well No.monitoring. O Groundwater from the Site 4 water well No. 10 contains no VOCs. Because it remains unclear whether levels of THMs previously measured.19 31984.
PREPARED FOR UNITED STATES AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY BROOKS AIR FORCE BASE, TEXAS 78235,c.’p! Force August 1984 Occupational and Environmental Health Laboratory I3 NUMBER OF PAGES Aerospace Medical Division (AFSC) 249 total pages.
Brooks Air.PROGRAM BACKGROUND i-I 1.2 FACILITY HISTORY 1-3 1.3 DISPOSAL SITE DESCRIPTIONS 1-b 1.4 PROJECT STAFF 1-20 2.0 ENVIRONMENTAL SETTING 2-1 2.1 METEOROLOGY 2-1.Canestrelli, Alberto; Toro, Eleuterio F.2012-10-01Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in 34 and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations.
The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example.
Installing Mantis On Iis Windows 10
In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.1982-06-01Septic Tanks at Langley Air Force Base 12 Location of Oil /Water Separators at Langley Air Force Base 13 Location Map of Possible Contaminated Area at.No. J.) and old vehicle dumping area (Site No. A-17 Location of old underground fuel lines-possible oil -saturated area. Vi FIGURES-Continued A.18 Location of old wastewater treatment plant at the Main Base Area (Site No.
A-19 Location of old underground oil storage tanks-possible oil.Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze2013-11-01In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high.
We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress.Docheva, Denitsa; Padula, Daniela; Popov, Cvetan; Mutschler, Wolf; Clausen-Schaumann, Hauke; Schieker, Matthias2008-01-01Abstract Within the bone lie several different cell types, including osteoblasts (OBs) and mesenchymal stem cells (MSCs). The MSCs are ideal targets for regenerative medicine of bone due to their differentiation potential towards OBs.
Installing Mantis On Iis Video
Human MSCs exhibit two distinct morphologies: rapidly self-renewing cells (RS) and flat cells (FC) with very low proliferation rates. Another cell type found in pathological bone conditions is osteosarcoma. In this study, we compared the topographic and morphometric features of RS and FC cells, human OBs and MG63 osteosarcoma cells by atomic force microscopy (AFM). The results demonstrated clear differences: FC and hOB cells showed similar ruffled topography, whereas RS and MG63 cells exhibited smoother surfaces. Furthermore, we investigated how selected substrates influence cell morphometry. We found that RS and MG63 cells were flatter on fibrous substrates such as polystyrene and collagen I, but much more rounded on glass, the smoothest surface. In contrast, cells with large area, namely FC and hOB cells, did not exhibit pronoun.